
Alberto Parravicini
alberto.parravicini@polimi.it

2021-02-01

How simple can 
we make GPU scheduling?Alberto Parravicini, Politecnico di Milano, alberto.parravicini@polimi.it
Arnaud Delamare, Oracle Labs
Marco Arnaboldi, Oracle Labs
Marco D. Santambrogio, Politecnico di Milano

2021-05-18

DAG-based Scheduling with Resource Sharing for 
Multi-task Applications in a Polyglot GPU Runtime



Alberto Parravicini - IPDPS 2021 - 2021/05/18

Improving performance in
multi-kernel GPU computations

2

GPUs are great for parallel computing 
● Deep Learning, Image processing, Graph analytics, etc. 

But multi-kernel applications offer more opportunities
for asynchronous computations

1. Run concurrent GPU computations (space-sharing)
2. Run GPU computations concurrently to CPU
3. Overlap data-transfer with computations Asynchronous execution 

provides an average of 
62% speedup
on a Tesla P100



Alberto Parravicini - IPDPS 2021 - 2021/05/18

Improving performance in
multi-kernel GPU computations

3

GPUs are great for parallel computing 
● Deep Learning, Image processing, Graph analytics, etc. 

But multi-kernel applications offer more opportunities
for asynchronous computations

1. Run concurrent GPU computations (space-sharing)
2. Run GPU computations concurrently to CPU
3. Overlap data-transfer with computations

Extracting full performance in multi-kernel computations is hard
● Synchronization events and data-movement must be hand-optimized
● Full CUDA API is only available to C/C++



Alberto Parravicini - IPDPS 2021 - 2021/05/18

We want to provide fully transparent & automatic GPU scheduling

● A new scheduler that provides GPU space-sharing, CPU/GPU overlap, 
data-transfer/computation overlap

● High-level abstraction: support high-level languages (Python, R, JavaScript, 
Scala, etc.) through the GrCUDA API, without changing it

● Same performance as low-level APIs: CUDA Graphs, hand-optimized CUDA 
events in C++

Achieving peak performance in multi-kernel, 
automatically

4

https://developer.nvidia.com/blog/grcuda-a-polyglot-language-binding-for-cuda-in-graalvm/



Alberto Parravicini - IPDPS 2021 - 2021/05/18

5

We represent multi-kernel GPU computations 
as vertices of a DAG
● Connect kernels with data-dependencies
● Maximize parallelism, minimize synchronizations

Use cases for multi-kernel GPU applications:

1. GPU Graph/Database querying 
● Union of subqueries

2. Image processing pipelines
● Combine multiple filters

3. Ensemble of ML models 
● Combine predictions from different models on the same data

GPU Execution as a DAG



Alberto Parravicini - IPDPS 2021 - 2021/05/18

An example using the Python GrCUDA API
● All kernel invocations are asynchronous

The GrCUDA DAG computation model 6



Alberto Parravicini - IPDPS 2021 - 2021/05/18

The GrCUDA DAG computation model 7

An example using the Python GrCUDA API
● All kernel invocations are asynchronous
● Dependencies are inferred once the 

computation is scheduled



Alberto Parravicini - IPDPS 2021 - 2021/05/18

The GrCUDA DAG computation model 8

An example using the Python GrCUDA API
● All kernel invocations are asynchronous
● Dependencies are inferred once the 

computation is scheduled
● CPU is blocked only when it asks for results

No user-defined dependencies in the scheduling

The original API is 
unmodified, everything 
is transparent!



Alberto Parravicini - IPDPS 2021 - 2021/05/18

6 custom benchmarks, evaluate multi-task GPU applications from different domains
● GPUs: Nvidia Tesla P100 (data-center GPU), GTX 1660 Super, GTX 960 (customer-grade GPUs)
● Note: dependency DAGs shown for clarity, but we never demand the full DAGs!

Performance evaluation - Setup 9



Alberto Parravicini - IPDPS 2021 - 2021/05/18

We compare against the original serial/synchronous GrCUDA scheduler
● Always faster: on average, 44% faster execution time

Same performance of CUDA Graphs and hand-optimized CUDA events (C++ API)
● We offer simpler scheduling at no performance loss

44% faster than synchronous execution 10



Alberto Parravicini - IPDPS 2021 - 2021/05/18

Started development for multi-GPU support
● Much more complex: we need to compute data location and migration costs at run 

time to identify the optimal scheduling.

Other directions
● Applications on top of GrCUDA: e.g. sparse linear algebra,

GrCUDA transparently maintains multiple data layouts (CSC, CSR, etc.)
● Integration with DSL: take full advantage of asynchronous execution, simplify GPU code

Future directions 11

Fully Open Source: github.com/AlbertoParravicini/grcuda



● A new scheduler for GrCUDA for transparent async execution
● 44% faster than synchronous execution
● Fully integrated with GraalVM, available for Python, R, Java, JavaScript, etc.

 Fully Open Source: github.com/AlbertoParravicini/grcuda
● We thank Oracle Labs for its support to Politecnico di Milano and its

contributions to this work

Alberto Parravicini, alberto.parravicini@polimi.it
Arnaud Delamare
Marco Arnaboldi 
Marco D. Santambrogio

IPDPS 2021 - 2021/05/18

https://github.com/AlbertoParravicini/grcuda
mailto:alberto.parravicini@polimi.it


Alberto Parravicini - IPDPS 2021 - 2021/05/18

GraalVM is a JVM that allows running Java, R, Python, JavaScript, etc. on a common backend

GrCUDA is a GraalVM-based DSL that exposes the CUDA API to all the languages in GraalVM
● GPU acceleration for high-level languages through a unified backend

GrCUDA is a great starting point for us
● Runtime management of arrays/kernels
● Common backend for all languages

Also many other benefits
● Simplify data-transfer with Unified Memory
● Just-In-Time CUDA compilation
● Support for any CUDA kernel and library

Enter GrCUDA, the polyglot CUDA API 13



Alberto Parravicini - IPDPS 2021 - 2021/05/18

Many libraries provide APIs for GPU scheduling: TensorFlow, CUDA Graphs, and more [1,2]

What’s new here?

1. It’s fully transparent to the user, the API of GrCUDA is not modified
2. Dependencies are computed at runtime, not at compile time or eagerly

● GraalVM partial evaluation minimizes the runtime overheads (e.g. repeated array 
accesses)

3. Updates to the GrCUDA runtime are immediately available to every GraalVM language
● Instead of having different libraries: PyCUDA, JCuda, GPU.js, etc.

Differences with Existing Techniques 14

[1] Gautier, Thierry, et al. "Xkaapi: A runtime system for data-flow task programming on heterogeneous 
architectures." 2013 IEEE 27th International Symposium on Parallel and Distributed Processing. IEEE, 2013.
[2] Fumero, Juan, et al. "Dynamic application reconfiguration on heterogeneous hardware." Proceedings of the 15th 
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments. 2019.



Alberto Parravicini - IPDPS 2021 - 2021/05/18

● New components are highlighted in red
● Kernel invocations are wrapped into 

computational elements (1)

The extended GrCUDA architecture 15



Alberto Parravicini - IPDPS 2021 - 2021/05/18

● New components are highlighted in red
● Kernel invocations are wrapped into 

computational elements (1)
● The GrCUDA execution context computes 

data-dependencies, updates the DAG (2, 3)

The extended GrCUDA architecture 16



Alberto Parravicini - IPDPS 2021 - 2021/05/18

● New components are highlighted in red
● Kernel invocations are wrapped into 

computational elements (1)
● The GrCUDA execution context computes 

data-dependencies, updates the DAG (2, 3)
● The computation is assigned a CUDA stream 

based on dependencies and availability (4)

The extended GrCUDA architecture 17



Alberto Parravicini - IPDPS 2021 - 2021/05/18

● New components are highlighted in red
● Kernel invocations are wrapped into 

computational elements (1)
● The GrCUDA execution context computes 

data-dependencies, updates the DAG (2, 3)
● The computation is assigned a CUDA stream 

based on dependencies and availability (4)
● The execution context schedules the 

computation on GPU (5, 6)
● Data prefetching and event 

synchronizations are non-blocking and 
asynchronous

The extended GrCUDA architecture 18



Alberto Parravicini - IPDPS 2021 - 2021/05/18

● We are not slower (and often faster) than the highly optimized CUDA Graphs, which requires manual 
dependencies. We have also the same performance as hand-optimized scheduling with CUDA events

● We offer simpler scheduling at no performance loss

Performance against CUDA Graphs 19



Alberto Parravicini - IPDPS 2021 - 2021/05/18

Our scheduler exploits untapped GPU resources

● Higher values for memory throughput,
L2 cache utilization, etc.

● Significant overlap between transfer
and computations

Unlocking better GPU utilization 20


